Jumat, 27 Januari 2012

Menghitung Entalpi Dengan Menggunakan Hukum Hess


Hukum Hess menyatakan bahwa,
“entalpi suatu reaksi tidak dipengaruhi oleh jalannya reaksi akan tetapi hanya tergantung pada keadaan awal dan keadaan akhir. Jadi untuk menentukan entalpi suatu reaksi kita bisa memperolehnya dengan mengambil semua jalan yang tersedia”
Artinya untuk menentukan entalpi suatu reaksi tunggal maka kita bisa mengkombinasi beberapa reaksi sebagai “jalan” untuk menentukan entalpi reaksi tunggal tersebut. Hasil akhir yang akan kita peroleh akan menunjukkan nilai yang sama.
Sebagai contoh:
Entalpi pembentukan NO2 dapat kita cari dari reaksi berikut:
N2(g)  + O2(g)   ->   2NO2(g)  deltaH = 68 KJ
Dengan mengetahui entalpi standart pembentukan NO2 maka kita bisa menghitung besarnya berapa nilai entalpi untuk reaksi diatas.
Atau kita bisa menghitungnya dengan menggunakan kombinasi beberapa reaksi (minimal 2 reaksi dan bahkan bisa lebih) berikut:
reaksipembentukanNO2
Dengan mengethaui besarnya entalpi dari reaksi I dan II diatas maka kita bisa mencari entalpi pembentukan NO2. Tentu saja kita harus mengatur satu reaksi dengan reaksi yang lain agar nantinya jika kesemua reaksi dijumlahkan akan diperoleh reaksi yang diingkan.
Lalu apa kegunaan daripada hukum Hess? Salah satu manfaat hukum Hess adalah kita dapat menghitung entalpi suatu reaksi yang sangat sulit sekali diukur dilaboratorium.
Hal-hal yang perlu diperhatikan dalam penerapan hukum hess adalah:
  • Kita dapat mengkombinasikan beberapa reaksi yang telah diketahui entalpinya untuk memperoleh entalpi reaksi yang kita cari.
  • Kebalikan dari suatu reaksi mengakibatkan perubahan tanda entalpi, artinya jika suatu reaksi berjalan secara eksoterm maka kebalikan reaksi tersebut adalah endoterm dengan tanda entalpi yang saling berlawanan.reaksikebalikan
  • Jika suatu reaksi dikalikan dengan suatu bilangan maka entalpi reaksi tersebut juga harus dikalikan dengan bilangan yang sama. reaksi
Tips:
Untuk mengerjakan soal yang berhubungan dengan hukum Hess maka kita lebih mudah mengerjakannya dengan mengurutkannya dari belakang (bawah). Artinya Anda melihat terlebih dahulu reaksi yang ditanyakan, kemudian mulai menyusun satu persatu reaksi yang diketahui berdasarkan reaktan dan produk dari reaksi yang dicari.

TIPS BELAJAR TERMOKIMIA mudah


TERMOKIMIA
Apakah kamu mengalami kesulitan dalam belajar bab Termokimia? Kalau jawaban kamu “Ya” maka saya rasa kamu wajib untuk membaca kelanjutan artikel ini. Gimana dengan kamu yang sudah lancer mengerjakan soal-soal Termokimia? Saya rasa teruskan saja membaca artikel ini, barangkali saja bisa menambah referensi kamu, tul kan he he he hehe.
Menurut pengalaman saya ada 4 macam rumus utama yang bisa digunakan untuk menyelesaikan soal-soal termokimia, yaitu:
1. Rumus Kalorimeter
Q = m. c.∆T = C. .∆T
Rumus ini sering dipakai apabila kita ingin mencari energi panas yang dihasilkan dari pencampuran dua buah larutan atau untuk mencari energi panas yang terlibat dalam reaksi yang dilakukan dengan menggunakan calorimeter. Contoh soal seperti ini misalnya larutan NaOH dicampur dengan larutan H2SO4 dan kemudian kita disuruh mencari panas netralisasi, atau suatu zat dibakar dalam calorimeter kemudian panas yang dihasilkan ditransfer dalam air didalam calorimeter dan kita disuruh mencari panas pembakaran zat tersebut.
Oh ya jika diketahui kalor jenis ( c ) zat maka gunakan rumus Q=mc? T tapi kalau yang diketahui kapasitas panasnya ( C ) maka gunakan rumus Q=C? T
2. Rumus Entalpi Pembentukan
∆H = ∆H produk – ∆H reaktan
Rumus ini dipakai apabila dalam soal kita disuruh mencari entalpi suatu reaksi dan yang diketahui adalah data-data entalpi pembentukan dari masing-masing spesies dalam reaksi. Contoh tipe soal dengan penyelesaian rumus ini adalah sebagai berikut:
“Hitung entalpi reaksi A + B -> C + D jika diketahui entalpi pembentukan A =….KJ/mol, B= …KJ/mol, C = …KJ/mol dan D=…KJ/mol”
3. Rumus Energi Ikatan
∆H = ∆H pemutusan – ∆H pembentukan
Rumus ini dipakai untuk menyelesaikan soal-soal yang diketahui data energi pemutusan ikatan / data pembentukan ikatan. Contoh dari soal ini adalah sebagai berikut:
“Hitung reaksi CH4 + O2 -> CO2 + H2O jika diketahui data energi ikatan C-H = …KJ, O=O=…KJ, H-O=…KJ dan seterusnya.”
4. Rumus mencari entalpi reaksi dengan dasar hukum Hess
Soal-soal dengan penyelesaian seperti ini tandanya adalah terdapat data sejumlah reaksi dan akhirnya kita disuruh mencari entalpi reaksi tertentu. Cara nya adalah dengan mengatur kembali reaksi-reaksi yang ada sehingga jika reaksi-reaksi tersebut dijumlahkan amaka akan kita peroleh reaksi yang ditanyakan. Contoh soalnya adalah memiliki cirri-ciri sebagai berikut:
“ hitunglah entalpi reaksi A + E -> B + F jika diketahui;
A + D -> C + B   ∆H = …KJ/mol
B + D -> F          ∆H = …KJ/mol
E + F -> C + D    ∆H = …KJ/mol”
Nah yang perlu diingat disini adalah bahwa data entalpi yang ditulis di buku adalah dalam satuan KJ/mol, contohnya entalpi pembentukan CO2 adalah ∆H = -394 KJ/mol, ini berarti pembentukan 1 mol CO2 akan membebaskan energi sebanyak 394 KJ. Jika di dalam soal yang ditanyakan misalnya 0,5 mol, 2 mol, atau 3 mol maka tentunya kamu harus mengkonversi terlebih dahulu besar entalpi ini.
Dari http://belajarkimia.com

Minggu, 15 Januari 2012

Termokimia

1. Pembakaran Sempurna dan Tidak Sempurna

Ditulis oleh Bambang Sugianto pada 16-06-2009
Pembakaran bahan bakar dalam mesin kendaraan atau dalam industri tidak terbakar sempurna. Pembakaran sempurna senyawa hidrokarbon (bahan bakar fosil) membentuk karbon dioksida dan uap air. Sedangkan pembakaran tak sempurna membentuk karbon monoksida dan uap air.  Misalnya:
a. Pembakaran sempurna isooktana:
C8H18 (l) +12 ½ O2 (g) –> 8 CO2 (g) + 9 H2O (g) ΔH = -5460 kJ
b. Pembakaran tak sempurna isooktana:
C8H18 (l) + 8 ½ O2 (g) -> 8 CO (g) + 9 H2O (g) ΔH  = -2924,4 kJ
Dampak Pembakaran tak Sempurna
Sebagaimana terlihat pada contoh di atas, pembakaran tak sempurna menghasilkan lebih sedikit kalor. Jadi, pembakaran tak sempurna mengurangi efisiensi bahan bakar. kerugian lain dari pembakaran tak sempurna adalah dihasilkannya gas karbon monoksida (CO), yang bersifat racun. Oleh karena itu, pembakaran tak sempurna akan mencemari udara.

2. Kalor Pembakaran

Ditulis oleh Bambang Sugianto pada 15-06-2009
Reaksi kimia yang umum digunakan untuk menghasilkan energi adalah pembakaran, yaitu suatu reaksi cepat antara bahan bakar denga oksigen yang disertai terjadinya api. Bahan bakar utama dewasa ini adalah bahan bakar fosil, yaitu gas alam, minyak bumi, dan batu bara. Bahan bakar fosil itu berasal dari pelapukan sisa organisme, baik tumbuhan atau hewan. Pembentukan bahan bakar fosil ini memerlukan waktu ribuan sampai jutaan tahun.
Bahan bakar fosil terutama terdiri atas senyawa hidrokarbon, yaitu senyawa yang hanya terdiri atas karbon dan hidrogen. Gas alam terdiri atas alkana suku rendah terutama metana dan sedikit etana, propana, dan butana. Seluruh senyawa itu merupakan gas yang tidak berbau. Oleh karena itu, kedalam gas alam ditambahkan suatu zat yang berbau tidak sedap, yaitu merkaptan, sehingga dapat diketahui jika ada kebocoran. Gas alam dari beberapa sumber mengandung H2S, suatu kontaminan yang harus disingkirkan sebelum gas digunakan sebagai bahan bakar karena dapat mencemari udara. Beberapa sumur gas juga mengandung helium.
Minyak bumi adalah cairan yang mengandung ratusan macam senyawa, terutama alkana, dari metana hingga yang memiliki atom karbon mencapai lima puluhan. Dari minyak bumi diperoleh bahan bakar LPG (Liquified Petroleum gas), bensin, minyak tanah, kerosin, solar dan lain-lain. Pemisahan komponen minyak bumi itu dillakukan dengan destilasi bertingkat. Adapun batu bara adalah bahan bakar padat, yang terutama, terdiri atas hidrokarbon suku tinggi. Batu bara dan minyak bumi juga mengandung senyawa dari oksigen, nitrogen, dan belerang.
Bahan bakar fosil, terutama minyak bumi,  telah digunakan dengan laju yang jauh lebih cepat dari pada proses pembentukannya. Oleh karena itu, dalam waktu yang tidak terlalu lama lagi akan segera habis. Untuk menghemat penggunaan minyak bumi dan untuk mempersiapkan bahan bakar pengganti, telah dikembangkan berbagai bahan bakar lain, misalnya gas sintesis (sin-gas) dan hidrogen. Gas sintetis diperoleh dari gasifikasi batubara. Batu bara merupakan bahan bakar fosil yang paling melimpah, yaitu sekitar 90 % dari cadangan bahan bakar fosil. Akan tetapi penggunaan bahan bakar batubara menimbulkan berbagai masalah, misalnya dapat menimbulkan polusi udara yang lebih hebat daripada bahan bakar apapun. Karena bentuknya yang padat terdapat keterbatasan penggunaannya. Oleh karena itu, para ahli berupaya mengubahnya menjadi gas sehingga pernggunaannya lebih luwes dan lebih bersih.
Gasifikasi batubara dilakukan dengan mereaksikan batubara panas dengan uap air panas. Hasil proses itu berupa campuran gas CO,H2 dan CH4.
Sedangkan bahan sintetis lain yang juga banyak dipertimbangkan adalah hidrogen. Hidrogen cair bersama-sama dengan oksigen cair telah digunakan pada pesawat ulang-alik sebagai bahan bakar roket pendorongnya. Pembakaran hidrogen sama sekali tidak memberi dampak negatif pada lingkungan karena hasil pembakarannya adalah air. Hidrogen dibuat dari air melalui reaksi  endoterm berikut:
H2O (l) —> 2 H2 (g) + O2 (g) ΔH = 572 kJ
Apabila energi yang digunakan untuk menguraikan air tersebut berasal dari bahan bakar fosil, maka hidrogen bukanlah bahan bakar yang konversial. Tetapi saat ini sedang dikembangkan penggunaan energi nuklir atau energi surya. Jika proyek itu berhasil, maka dunia tidak perlu khawatir akan kekurangan energi. Matahari sesungguhnya adalah sumber  energi terbesar di bumi, tetapi tekonologi penggunaan energi surya belumlah komersial. Salah satu kemungkinan penggunaan energi surya adalah menggunakan tanaman yang dapat tumbuh cepat. Energinya kemudian diperoleh dengan membakar tumbuhan itu. Dewasa ini, penggunaan energi surya yang cukup komersial adalah untuk pemanas air rumah tangga (solar water heater). Nilai kalor dari berbagai jenis bahan bakar diberikan pada tabel 4  berikut.
Tabel 4. Komposisi dan nilai kalor dari berbagai jenis bahan bakar

gb19

3. Entalpi Pembakaran

Ditulis oleh Bambang Sugianto pada 14-06-2009
Reaksi suatu zat dengan oksigen disebut reaksi pembakaran. Zat yang mudah terbakar adalah unsur karbon, hidrogen, belerang, dan berbagai senyawa dari unsur tersebut. Pembakaran dikatakan sempurna apabila karbon (c) terbakar menjadi CO2, hidrogen (H)  terbakar menjadi H2O, belerang (S) terbakar menjadi SO2.
Perubahan entalpi pada pembakaran sempurna 1 mol suatu zat yang diukur pada 298 K, 1 atm disebut entalpi pembakaran standar (standard enthalpy of  combustion), yang dinyatakan dengan ΔHc0 . Entalpi pembakaran juga dinyatakan dalam kJ mol -1 .
Harga entalpi pembakaran dari berbagai zat pada 298 K, 1 atm diberikan pada tabel 3 berikut.
Tabel 3 . Entalpi Pembakaran  dari berbagai zat pada 298 K, 1 atm
gb18
Pembakaran bensin adalah suatu proses eksoterm. Apabila bensin dianggap terdiri atas isooktana, C8H18 (salah satu komponen bensin) tentukanlah jumlah kalor yang dibebaskan pada pembakaran 1 liter bensin. Diketahui entalpi pembakaran isooktana = -5460 kJ mol-1 dan massa jenis isooktan = 0,7 kg L -1 (H = 1; C =12).
Jawab:
Entalpi pembakaran isooktana yaitu – 5460 kJ mol-1 . Massa 1 liter bensin = 1 liter x 0,7 kg L-1 = 0,7 kg = 700 gram . Mol isooktana = 700 gram/114 gram  mol-1 = 6,14 mol.  Jadi kalor yang dibebaskan pada pembakaran 1 liter bensin adalah: 6,14 mol x 5460 kJ mol -1 = 33524,4 kJ.

4. Entalpi Penguraian

Reaksi penguraian adalah kebalikan dari reaksi pembentukan. Oleh karena itu, sesuai dengan azas kekekalan energi, nilai entalpi penguraian sama dengan entalpi pembentukannya, tetapi tandanya berlawanan.
Contoh:
Diketahui ΔHf 0 H2O (l) = -286  kJ mol -1, maka entalpi penguraian H2O (l) menjadi gas hidrogen dan gas oksigen adalah + 286 kJ mol-1
H2O (l) ——> H2 (g) + ½ O2 (g) ΔH = + 286 kJ


5. Entalpi Pembentukan

Ditulis oleh Bambang Sugianto pada 12-06-2009
Perubahan entalpi pada pembentukan 1 mol zat langsung dari unsur-unsurnya disebut entalpi molar pembentukan atau entalpi pembentukan. Jika pengukuran dilakukan pada keadaan standar (298 k, 1 atm) dan semua unsur-unsurnya dalam bentuk standar, maka perubahan entalpinya disebut entalpi pembentukan standar (ΔHf 0). Entalpi pembentukan dinyatakan dalam kJ per mol (kJ mol -1).
Supaya terdapat keseragaman, maka harus ditetapkan keadaan standar, yaitu suhu 25 0 C dan tekanan 1 atm. Dengan demikian perhitungan termokimia didasarkan pada keadaan standar.
Pada umumnya  dalam persamaan termokimia dinyatakan:
AB + CD ———-> AC + BD Δ H0 = x kJ/mol
Δ H0 adalah lambang dari perubahan entalpi pada keadaan itu. Yang dimaksud dengan bentuk standar dari suatu unsur adalah bentuk yang paling stabil dari unsur itu pada kondisi standar (298 K, 1 atm).
Untuk unsur yang mempunyai bentuk alotropi, bentuk standarnya ditetapkan berdasarkan pengertian tersebut. Misalnya, karbon yang dapat berbentuk intan dan grafit, bentuk standarnya adalah grafit, karena grafit adalah bentuk karbon yang paling stabil pada 298 K, 1 atm. Dua hal yang perlu diperhatikan berkaitan dengan entalpi pembentukan yaitu bahwa zat yang dibentuk adalah 1 mol dan dibentuk dari unsurnya dalam bentuk standar.
Contoh: Entalpi pembentukan etanol (C2H5OH) (l)  adalah -277,7 kJ per mol. Hal ini berarti: Pada pembentukan 1 mol (46 gram) etanol dari unsur-unsurnya dalam bentuk standar, yaitu karbon (grafit), gas hidrogen dan gas oksigen, yang diukur pada 298 K, 1 atm dibebaskan 277,7 kJ  dengan persamaan termokimianya adalah:
2 C (s, grafit) + 3H2 (g) + ½ O2 (g) –> C2 H5 OH (l) ΔH = -277,7kJ
Nilai entalpi pembentukan dari berbagai zat serta persamaan termokimia reaksi pembentukannya diberikan pada tabel 2 berikut.
Tabel 2. Nilai entalpi pembentukan berbagai zat & Persamaan termokimia reaksi pembentukannya

6. Azas Kekekalan Energi

Ditulis oleh Bambang Sugianto pada 11-06-2009
Telah disebutkan bahwa jumlah energi yang dimiliki sistem dinyatakan sebagai energi dalam (U). Hukum I termodinamika menyatakan hubungan antara energi sistem dengan lingkungannya jika terjadi peristiwa. Energi dalam sistem akan berubah jika sistem menyerap atau membebaskan kalor. Jika sistem menyerap energi kalor, berarti lingkungan kehilangan kalor, energi dalamnya bertambah (ΔU > 0),  dan sebaliknya, jika lingkungan menyerap kalor atau sistem membebasakan kalor maka energi dalam sistem akan berkurang (ΔU < 0),  dengan kata lain sistem kehilangan kalor dengan jumlah yang sama.
Energi dalam juga akan berubah jika sistem melakukan atau menerima kerja. Walaupun sistem tidak menyerap atau membebaskan kalor, energi dalam sistem akan berkurang jika sistem melakukan kerja, sebaliknya akan bertambah jika sistem menerima kerja.
Sebuah pompa bila dipanaskan akan menyebabkan suhu gas dalam pompa naik dan volumenya bertambah. Berarti energi dalam gas bertambah dan sistem melakukan kerja. Dengan kata lain, kalor (q) yang diberikan kepada sistem sebagian disimpan sebagai energi dalam (ΔU) dan sebagian lagi diubah menjadi kerja (w).
Secara matematis hubungan antara energi dalam, kalor dan kerja dalam hukum I termodinamika dapat dinyatakan sebagai berikut:
ΔU = q + W (6)
Persamaan (6) menyatakan bahwa perubahan energi dalam (ΔU) sama dengan jumlah kalor yang diserap (q) ditambah dengan jumlah kerja yang diterima sistem (w). Rumusan hukum I termodinamika dapat dinyatakan dengan ungkapan atau kata-kata sebagai berikut.
Energi tidak dapat diciptakan atau dimusnahkan, tetapi dapat diubah dari satu bentuk ke bentuk yang lain, atau energi alam semesta adalah konstan.” Karena itu hukum ini disebut juga hukum kekekalan energi .
Berdasarkan hukum I termodinamika, kalor yang menyertai suatu reaksi hanyalah merupakan perubahan bentuk energi. Energi listrik dapat diubah menjadi bentuk energi kalor. Energi kimia dapat diubah menjadi energi listrik dan energi listrik dapat diubah menjadi energi kimia. Agar tidak terjadi kekeliruan dalam menggunakan rumus diatas, perlu ditetapkan suatu perjanjian. Maka perjanjian itu adalah:
1.    Yang diutamakan dalam ilmu kimia adalah sistem, bukan lingkungan
2.   Kalor (q) yang masuk sistem bertanda positif (+), sedangkan yang keluar bertanda negatif (-)
3.   Kerja (w) yang dilakukan sistem (ekspansi) bertanda negatif (-) , dan yang dilakukan lingkungan (kompresi) bertanda positif.
gb13
Gambar 8 Ekspansi gas pada tekanan eksternal konstan.
Tanda untuk q dan w dapat dilihat pada Gambar 9 berikut
gb22
Gambar 9. Tanda untuk q dan w
4.    Yang diutamakan dalam ilmu kimia adalah sistem, bukan lingkungan.
5.    Kerja dihitung dengan rumus:
W=-P(V1-V2) (7)
Dimana  w = kerja (pada tekanan 1 atm), V1 = volume awal, dan V2 = volume akhir, dan P = tekanan yang melawan gerakan piston pompa (atm), P untuk ekspansi adalah P ex dan untuk kompresi adalah P in . Penerapan hukum termodinamika pertama dalam bidang kimia merupakan bahan kajian dari termokimia.
Contoh:
Suatu sistem menyerap kalor sebanyak 1000 kJ dan melakukan kerja sebanyak 5 kJ. Berapakah perubahan energi dalam sistem ini?
Jawab:
Karena sistem menyerap kalor, maka q bertanda positif, tetapi karena
sistem m elakukan kerja, maka w bertanda negatif.
ΔU= q + w
=100 kJ – 5 kJ
= 95 kJ
gb17

7. Entalpi dan Perubahan Entalpi

Ditulis oleh Bambang Sugianto pada 10-06-2009
Setiap sistem atau zat mempunyai energi yang tersimpan didalamnya. Energi potensial berkaitan dengan wujud zat, volume, dan tekanan. Energi kinetik ditimbulkan karena atom – atom dan molekul­molekul dalam zat bergerak secara acak. Jumlah total dari semua bentuk energi itu disebut entalpi (H) . Entalpi akan tetap konstan selama tidak ada energi yang masuk atau keluar dari zat. . Misalnya entalpi untuk air dapat ditulis H H20 (l) dan untuk es ditulis  H H20 (s).
Perhatikan lampu spiritus, jumlah panas atau energi yang dikandung oleh spiritus pada tekanan tetap disebut entalpi spiritus. Entalpi tergolong sifat eksternal, yakni sifat yang bergantung pada jumlah mol zat. Bahan bakar fosil seperti minyak bumi, batubara mempunyai isi panas atau entalpi.
Entalpi (H) suatu zat ditentukan oleh jumlah energi dan semua bentuk energi yang dimiliki zat yang jumlahnya tidak dapat diukur. Perubahan kalor atau entalpi yang terjadi selama proses penerimaan atau pelepasan kalor dinyatakan dengan ” perubahan entalpi (ΔH) ” . Misalnya pada perubahan es menjadi air, maka dapat ditulis sebagai berikut:
Δ H = H H20 (l) -H H20 (s) (7)
Marilah kita amati reaksi pembakaran bensin di dalam mesin motor. Sebagian energi kimia yang dikandung bensin, ketika bensin terbakar, diubah menjadi energi panas dan energi mekanik untuk menggerakkan motor.
Demikian juga pada mekanisme kerja sel aki. Pada saat sel aki bekerja, energi kimia diubah menjadi energi listrik, energi panas yang dipakai untuk membakar bensin dan reaksi pembakaran bensin menghasilkan gas, menggerakkan piston sehingga menggerakkan roda motor.
Gambar 10 berikut ini menunjukkan diagram perubahan energi kimia menjadi berbagai bentuk energi lainnya.
gb14
Harga entalpi zat sebenarnya tidak dapat ditentukan atau diukur. Tetapi ΔH dapat ditentukan dengan cara mengukur jumlah kalor yang diserap sistem. Misalnya pada perubahan es menjadi air, yaitu 89 kalori/gram. Pada perubahan es menjadi air, ΔH adalah positif, karena entalpi hasil perubahan, entalpi air lebih besar dari pada entalpi es.
Termokimia merupakan bagian dari ilmu kimia yang mempelajari perubahan entalpi yang menyertai suatu reaksi. Pada perubahan kimia selalu terjadi perubahan entalpi. Besarnya perubahan entalpi adalah sama besar dengan selisih antara entalpi hasil reaksi dam jumlah entalpi pereaksi.
Pada reaksi endoterm, entalpi sesudah reaksi menjadi lebih besar, sehingga ΔH positif. Sedangkan pada reaksi eksoterm, entalpi sesudah reaksi menjadi lebih kecil, sehingga ΔH negatif. Perubahan entalpi pada suatu reaksi disebut kalor reaksi. Kalor reaksi untuk reaksi-reaksi yang khas disebut dengan nama yang khas pula, misalnya kalor pembentukan,kalor penguraian, kalor pembakaran, kalor pelarutan dan sebagainya.
Suatu reaksi kimia dapat dipandang sebagai suatu sistem yang terdiri dari dua bagian yang berbeda, yaitu pereaksi dan hasil reaksi atau produk. Perhatikan suatu reaksi yang berlangsung pada sistem tertutup dengan volume tetap (ΔV = 0), maka sistem tidak melakukan kerja, w = 0. Jika kalor reaksi pada volume tetap dinyatakan dengan qv , maka persamaan hukum I termodinamika dapat ditulis:
ΔU = qv + 0  = qv = q reaksi (8)
q reaksi disebut sebagai kalor reaksi. Hal ini berarti bahwa semua perubahan energi yang menyertai reaksi akan muncul sebagai kalor. Misal: suatu reaksi eksoterm mempunyai perubahan energi dalam sebesar 100 kJ. Jika reaksi itu berlangsung dengan volume tetap, maka jumlah kalor yang dibebaskan adalah 100 kJ.
Kebanyakan reaksi kimia berlangsung dalam sistem terbuka dengan tekanan tetap (tekanan atmosfir). Maka sistem mungkin melakukan atau menerima kerja tekanan – volume, w = 0). Oleh karena itu kalor reaksi pada tekanan tetap dinyatakan dengan qp , maka hukum I termodinamika dapat ditulis sebagai berikut:
ΔU = qp + w atau qp  = ΔU – w = q reaksi (9)
Untuk menyatakan kalor reaksi yang berlangsung pada tekanan tetap, para ahli mendefinisikan suatu besaran termodinamika yaitu entalpi (heat content) dengan lambang “H”
Entalpi didefinisikan sebagai jumlah energi dalam dengan perkalian tekanan dan volume sistem, yang dapat dinyatakan:
H = U + P V (10)
Reaksi kimia termasuk proses isotermal, dan bila dilakukan di udara terbuka maka kalor reaksi dapat dinyatakan sebagai:
qp = Δ H (11)
Jadi, kalor reaksi yang berlangsung pada tekanan tetap sama dengan perubahan entalpi. Oleh karena sebagian besar reaksi berlangsung pada tekanan tetap, yaitu tekanan atmosfir, maka kalor reaksi selalu dinyatakan sebagai perubahan entalpi (ΔH).
Akibatnya, kalor dapat dihitung dari perubahan entalpi reaksi, dan perubahan entalpi reaksi yang menyertai suatu reaksi hanya ditentukan oleh keadaan awal (reaktan) dan keadaan akhir (produk).
q = ΔH reaksi = Hp-Hr (12)
Contoh:
Suatu reaksi berlangsung pada volume tetap disertai penyerapan kalor sebanyak 200 kJ. Tentukan nilai Δ U , Δ H, q dan w reaksi itu
Jawab:
Sistem menyerap kalor sebanyak 200 kJ  , berarti q = + 200 kJ
Reaksi berlangsung pada volume tetap , maka w = 0 kJ.
ΔU = q + w
= + 200 kJ + 0 kJ = 200 kJ Δ H = q = + 200 kJ

8. Persamaan Termokimia

Ditulis oleh Bambang Sugianto pada 09-06-2009
Persamaan reaksi yang mengikutsertakan perubahan entalpinya disebut persamaan termokimia. Nilai ΔH yang dituliskan pada persamaan termokimia disesuaikan dengan stokiometri reaksi. Artinya jumlah mol zat yang terlibat dalam reaksi sama dengan koefisien reaksinya.
Oleh karena entalpi reaksi juga bergantung pada wujud zat harus dinyatakan, yaitu dengan membubuhkan indeks s untuk zat padat , l untuk zat cair, dan g untuk zat gas. Perhatikan contoh berikut .           Contoh: Pada pembentukan 1a mol air dari gas hidrogen dengan gas oksigen dibebaskan 286 kJ. Kata “dibebaskan” menyatakan bahwa reaksi tergolong eksoterm. Oleh karena itu ?H = -286 kJ Untuk setiap mol air yang terbentuk. Persamaan termokimianya adalah:
H2 (g)  + 1/2 O2 (g) ——> H2O (l)                  ΔH = -286 kJ
Atau
2 H2 (g)  + O2 (g) ——> 2 H2O (l)                 ΔH = -572 kJ
(karena koefisien reaksi dikali dua, maka harga ΔH  juga harus dikali dua).

9. Perubahan Entalpi Berdasarkan Energi Ikatan

Ditulis oleh Bambang Sugianto pada 08-06-2009
Energi ikatan didefinisikan sebagai energi yang diperlukan untuk memutuskan 1 mol ikatan dari suatu molekul dalam wujud gas. Energi ikatan dinyatakan dalam kilojoule per mol (kJ mol -1 )
Energi berbagai ikatan diberikan pada tabel 1.
Tabel 1. Harga Energi ikatan berbagai molekul (kJ/mol)
gb15

10. Perubahan Entalpi Berdasarkan Entalpi Pembentukan

Kalor suatu reaksi dapat juga ditentukan dari data entalpi pembentukan zat pereaksi dan produknya. Dalam hal ini, zat pereaksi dianggap terlebih dahulu terurai menjadi unsur-unsurnya, kemudian unsur-unsur itu bereaksi membentuk zat produk. Secara umum untuk reaksi:
m AB + n CD —–> p AD  + q CB
ΔH0 = jumlah ΔH0 f (produk) -   jumlah ΔH0 f (pereaksi)
Perubahan Entalpi Berdasarkan Hukum Hess
Banyak reaksi yang dapat berlangsung secara bertahap. Misalnya pembakaran karbon atau grafit. Jika karbon dibakar dengan oksigen berlebihan terbentuk karbon dioksida menurut persamaan reaksi:
C(s) + O2 (g) —–> CO2 (g)            Δ H   = – 394 kJ
Reaksi diatas dapat  berlangsung melalui dua tahap. Mula-mula karbon dibakar dengan oksigen yang terbatas sehingga membentuk karbon monoksida. Selanjutnya, karbon monoksida itu dibakar lagi untuk membentuk karbon dioksida. Persamaan termokimia untuk kedua reaksi tersebut adalah:
C(s) + ½ O2 (g) —–> CO (g) ΔH   = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) Δ H   = – 283 kJ
Jika kedua tahap diatas dijumlahkan, maka diperoleh:
C(s) + ½ O2 (g) —–> CO (g) ΔH   = – 111 kJ
CO (g) + ½ O2 (g) —–> CO2 (g) ΔH   = – 283 kJ
————————————————————————- +
C(s) + O2 (g) —–> CO2 (g)           ΔH   = – 394 kJ

`11. Pengertian Reaksi Eksoterm dan Endoterm

Ditulis oleh Bambang Sugianto pada 07-06-2009
Perubahan entalpi (ΔH) positif menunjukkan bahwa dalam perubahan terdapat penyerapan kalor atau pelepasan kalor.
Reaksi kimia yang melepaskan atau mengeluarkan kalor disebut reaksi eksoterm, sedangkan reaksi kimia yang menyerap kalor disebut reaksi endoterm. Aliran kalor pada kedua jenis reaksi diatas dapat dilihat pada gambar 11 berikut:
gb16
Gambar 11 Aliran kalor pada reaksi eksoterm dan endoterm
Pada reaksi endoterm, sistem menyerap energi. Oleh karena itu, entalpi sistem akan bertambah. Artinya entalpi produk (Hp) lebih besar daripada entalpi pereaksi (Hr). Akibatnya, perubahan entalpi, merupakan selisih antara entalpi produk dengan entalpi pereaksi (Hp -Hr) bertanda positif. Sehingga perubahan entalpi untuk reaksi endoterm dapat dinyatakan:
ΔH = Hp- Hr > 0 (13 )
Sebaliknya, pada reaksi eksoterm , sistem membebaskan energi, sehingga entalpi sistem akan berkurang, artinya entalpi produk lebih kecil daripada entalpi pereaksi. Oleh karena itu , perubahan entalpinya bertanda negatif. Sehingga p dapat dinyatakan sebagai berikut:
ΔH = Hp- Hr < 0 ( 14 )

Perubahan entalpi pada reaksi eksoterm dan endoterm dapat dinyatakan dengan diagram tingkat energi. Seperti pada gambar 12. berikut
gb23



Cara Praktis Merakit PC Komputer


Pada dasarnya merakit PC itu cukup mudah, hanya saja dibutuhkan ke telitian saat mengerjakanya.. sehingga hasilnya cukup memuaskan diri kita
Komponen perakit komputer tersedia di pasaran dengan beragam pilihan kualitas dan harga. Dengan merakit sendiri komputer, kita dapat menentukan jenis komponen, kemampuan serta fasilitas dari komputer sesuai kebutuhan.Tahapan dalam perakitan komputer terdiri dari:
A. Persiapan
B. Perakitan

C. Pengujian
D. Penanganan Masalah
Persiapan yang baik akan memudahkan dalam perakitan komputer serta menghindari permasalahan yang mungkin timbul.Hal yang terkait dalam persiapan meliputi: Prosessor lebih mudah dipasang sebelum motherboard menempati casing. Cara memasang prosessor jenis socket dan slot berbeda.Jenis socket
rakit1.jpg
Persiapan
  1. Penentuan Konfigurasi Komputer
  2. Persiapan Kompunen dan perlengkapan
  3. Pengamanan
Penentuan Konfigurasi Komputer
Konfigurasi komputer berkait dengan penentuan jenis komponen dan fitur dari komputer serta bagaimana seluruh komponen dapat bekerja sebagai sebuah sistem komputer sesuai keinginan kita.Penentuan komponen dimulai dari jenis prosessor, motherboard, lalu komponen lainnya. Faktor kesesuaian atau kompatibilitas dari komponen terhadap motherboard harus diperhatikan, karena setiap jenis motherboard mendukung jenis prosessor, modul memori, port dan I/O bus yang berbeda-beda.
Persiapan Komponen dan Perlengkapan
Komponen komputer beserta perlengkapan untuk perakitan dipersiapkan untuk perakitan dipersiapkan lebih dulu untuk memudahkan perakitan. Perlengkapan yang disiapkan terdiri dari:
  • Komponen komputer
  • Kelengkapan komponen seperti kabel, sekerup, jumper, baut dan sebagainya
  • Buku manual dan referensi dari komponen
  • Alat bantu berupa obeng pipih dan philips
Software sistem operasi, device driver dan program aplikasi.
rakit2.jpg
Buku manual diperlukan sebagai rujukan untuk mengatahui diagram posisi dari elemen koneksi (konektor, port dan slot) dan elemen konfigurasi (jumper dan switch) beserta cara setting jumper dan switch yang sesuai untuk komputer yang dirakit.Diskette atau CD Software diperlukan untuk menginstall Sistem Operasi, device driver dari piranti, dan program aplikasi pada komputer yang selesai dirakit.
Pengamanan
Tindakan pengamanan diperlukan untuk menghindari masalah seperti kerusakan komponen oleh muatan listrik statis, jatuh, panas berlebihan atau tumpahan cairan.Pencegahan kerusakan karena listrik statis dengan cara:
  • Menggunakan gelang anti statis atau menyentuh permukaan logam pada casing sebelum memegang komponen untuk membuang muatan statis.
  • Tidak menyentuh langsung komponen elektronik, konektor atau jalur rangkaian tetapi memegang pada badan logam atau plastik yang terdapat pada komponen.
rakit3.jpg
Perakitan
Tahapan proses pada perakitan komputer terdiri dari:
  1. Penyiapan motherboard
  2. Memasang Prosessor
  3. Memasang heatsink
  4. Memasang Modul Memori
  5. memasang Motherboard pada Casing
  6. Memasang Power Supply
  7. Memasang Kabel Motherboard dan Casing
  8. Memasang Drive
  9. Memasang card Adapter
  10. Penyelesaian Akhir
1. Penyiapan motherboard
Periksa buku manual motherboard untuk mengetahui posisi jumper untuk pengaturan CPU speed, speed multiplier dan tegangan masukan ke motherboard. Atur seting jumper sesuai petunjuk, kesalahan mengatur jumper tegangan dapat merusak prosessor.
rakit4.jpg
2. Memasang Prosessor
  1. Tentukan posisi pin 1 pada prosessor dan socket prosessor di motherboard, umumnya terletak di pojok yang ditandai dengan titik, segitiga atau lekukan.
  2. Tegakkan posisi tuas pengunci socket untuk membuka.
  3. Masukkan prosessor ke socket dengan lebih dulu menyelaraskan posisi kaki-kaki prosessor dengan lubang socket. rapatkan hingga tidak terdapat celah antara prosessor dengan socket.
  4. Turunkan kembali tuas pengunci.
Jenis Slot
rakit5.jpg
  1. Pasang penyangga (bracket) pada dua ujung slot di motherboard sehingga posisi lubang pasak bertemu dengan lubang di motherboard
  2. Masukkan pasak kemudian pengunci pasak pada lubang pasak
Selipkan card prosessor di antara kedua penahan dan tekan hingga tepat masuk ke lubang slot.
rakit6.jpg
Beberapa jenis casing sudah dilengkapi power supply. Bila power supply belum disertakan maka cara pemasangannya sebagai berikut:
3. Memasang Heatsink
Fungsi heatsink adalah membuang panas yang dihasilkan oleh prosessor lewat konduksi panas dari prosessor ke heatsink.Untuk mengoptimalkan pemindahan panas maka heatsink harus dipasang rapat pada bagian atas prosessor dengan beberapa clip sebagai penahan sedangkan permukaan kontak pada heatsink dilapisi gen penghantar panas.Bila heatsink dilengkapi dengan fan maka konektor power pada fan dihubungkan ke konektor fan pada motherboard.
rakit16.jpg
4. Memasang Modul Memori
Modul memori umumnya dipasang berurutan dari nomor socket terkecil. Urutan pemasangan dapat dilihat dari diagram motherboard.Setiap jenis modul memori yakni SIMM, DIMM dan RIMM dapat dibedakan dengan posisi lekukan pada sisi dan bawah pada modul.Cara memasang untuk tiap jenis modul memori sebagai berikut.
Jenis SIMM
  1. Sesuaikan posisi lekukan pada modul dengan tonjolan pada slot.
  2. Masukkan modul dengan membuat sudut miring 45 derajat terhadap slot
  3. Dorong hingga modul tegak pada slot, tuas pengunci pada slot akan otomatis mengunci modul.
rakit7.jpg
rakit8.jpg
Jenis DIMM dan RIMM
Cara memasang modul DIMM dan RIMM sama dan hanya ada satu cara sehingga tidak akan terbalik karena ada dua lekukan sebagai panduan. Perbedaanya DIMM dan RIMM pada posisi lekukan
  1. Rebahkan kait pengunci pada ujung slot
  2. sesuaikan posisi lekukan pada konektor modul dengan tonjolan pada slot. lalu masukkan modul ke slot.
  3. Kait pengunci secara otomatis mengunci modul pada slot bila modul sudah tepat terpasang.
rakit9.jpg
rakit10.jpg
5. Memasang Motherboard pada Casing
Motherboard dipasang ke casing dengan sekerup dan dudukan (standoff). Cara pemasangannya sebagai berikut:
  1. Tentukan posisi lubang untuk setiap dudukan plastik dan logam. Lubang untuk dudukan logam (metal spacer) ditandai dengan cincin pada tepi lubang.
  2. Pasang dudukan logam atau plastik pada tray casing sesuai dengan posisi setiap lubang dudukan yang sesuai pada motherboard.
  3. Tempatkan motherboard pada tray casing sehinga kepala dudukan keluar dari lubang pada motherboard. Pasang sekerup pengunci pada setiap dudukan logam.
  4. Pasang bingkai port I/O (I/O sheild) pada motherboard jika ada.
  5. Pasang tray casing yang sudah terpasang motherboard pada casing dan kunci dengan sekerup.
rakit11.jpg
6. Memasang Power Supply
  1. Masukkan power supply pada rak di bagian belakang casing. Pasang ke empat buah sekerup pengunci.
  2. HUbungkan konektor power dari power supply ke motherboard. Konektor power jenis ATX hanya memiliki satu cara pemasangan sehingga tidak akan terbalik. Untuk jenis non ATX dengan dua konektor yang terpisah maka kabel-kabel ground warna hitam harus ditempatkan bersisian dan dipasang pada bagian tengah dari konektor power motherboard. Hubungkan kabel daya untuk fan, jika memakai fan untuk pendingin CPU.
rakit12.jpg
7. Memasang Kabel Motherboard dan Casing
Setelah motherboard terpasang di casing langkah selanjutnya adalah memasang kabel I/O pada motherboard dan panel dengan casing.
  1. Pasang kabel data untuk floppy drive pada konektor pengontrol floppy di motherboard
  2. Pasang kabel IDE untuk pada konektor IDE primary dan secondary pada motherboard.
  3. Untuk motherboard non ATX. Pasang kabel port serial dan pararel pada konektor di motherboard. Perhatikan posisi pin 1 untuk memasang.
  4. Pada bagian belakang casing terdapat lubang untuk memasang port tambahan jenis non slot. Buka sekerup pengunci pelat tertutup lubang port lalumasukkan port konektor yang ingin dipasang dan pasang sekerup kembali.
  5. Bila port mouse belum tersedia di belakang casing maka card konektor mouse harus dipasang lalu dihubungkan dengan konektor mouse pada motherboard.
  6. Hubungan kabel konektor dari switch di panel depan casing, LED, speaker internal dan port yang terpasang di depan casing bila ada ke motherboard. Periksa diagram motherboard untuk mencari lokasi konektor yang tepat.
rakit13.jpg
rakit14.jpg
rakit15.jpg
8. Memasang Drive
Prosedur memasang drive hardisk, floppy, CD ROM, CD-RW atau DVD adalah sama sebagai berikut: Cara memasang adapter:Komputer yang baru selesai dirakit dapat diuji dengan menjalankan program setup BIOS. Cara melakukan pengujian dengan program BIOS sebagai berikut:
  1. Copot pelet penutup bay drive (ruang untuk drive pada casing)
  2. Masukkan drive dari depan bay dengan terlebih dahulu mengatur seting jumper (sebagai master atau slave) pada drive.
  3. Sesuaikan posisi lubang sekerup di drive dan casing lalu pasang sekerup penahan drive.
  4. Hubungkan konektor kabel IDE ke drive dan konektor di motherboard (konektor primary dipakai lebih dulu)
  5. Ulangi langkah 1 samapai 4 untuk setiap pemasangan drive.
  6. Bila kabel IDE terhubung ke du drive pastikan perbedaan seting jumper keduanya yakni drive pertama diset sebagai master dan lainnya sebagai slave.
  7. Konektor IDE secondary pada motherboard dapat dipakai untuk menghubungkan dua drive tambahan.
  8. Floppy drive dihubungkan ke konektor khusus floppy di motherboard
Sambungkan kabel power dari catu daya ke masing-masing drive.
Card adapter yang umum dipasang adalah video card, sound, network, modem dan SCSI adapter. Video card umumnya harus dipasang dan diinstall sebelum card adapter lainnya.
rakit17.jpg
9. Memasang Card Adapter
  1. Pegang card adapter pada tepi, hindari menyentuh komponen atau rangkaian elektronik. Tekan card hingga konektor tepat masuk pada slot ekspansi di motherboard
  2. Pasang sekerup penahan card ke casing
  3. Hubungkan kembali kabel internal pada card, bila ada.
rakit18.jpg
10. Penyelessaian Akhir
  1. Pasang penutup casing dengan menggeser
  2. sambungkan kabel dari catu daya ke soket dinding.
  3. Pasang konektor monitor ke port video card.
  4. Pasang konektor kabel telepon ke port modem bila ada.
  5. Hubungkan konektor kabel keyboard dan konektor mouse ke port mouse atau poert serial (tergantung jenis mouse).
  6. Hubungkan piranti eksternal lainnya seperti speaker, joystick, dan microphone bila ada ke port yang sesuai. Periksa manual dari card adapter untuk memastikan lokasi port.
rakit19.jpg
Pengujian
  1. Hidupkan monitor lalu unit sistem. Perhatikan tampilan monitor dan suara dari speaker.
  2. Program FOST dari BIOS secara otomatis akan mendeteksi hardware yang terpasang dikomputer. Bila terdapat kesalahan maka tampilan monitor kosong dan speaker mengeluarkan bunyi beep secara teratur sebagai kode indikasi kesalahan. Periksa referensi kode BIOS untuk mengetahui indikasi kesalahan yang dimaksud oleh kode beep.
  3. Jika tidak terjadi kesalahan maka monitor menampilkan proses eksekusi dari program POST. ekan tombol interupsi BIOS sesuai petunjuk di layar untuk masuk ke program setup BIOS.
  4. Periksa semua hasil deteksi hardware oleh program setup BIOS. Beberapa seting mungkin harus dirubah nilainya terutama kapasitas hardisk dan boot sequence.
  5. Simpan perubahan seting dan keluar dari setup BIOS.
Setelah keluar dari setup BIOS, komputer akan meload Sistem OPerasi dengan urutan pencarian sesuai seting boot sequence pada BIOS. Masukkan diskette atau CD Bootable yang berisi sistem operasi pada drive pencarian.
Penanganan Masalah
Permasalahan yang umum terjadi dalam perakitan komputer dan penanganannya antara lain:
  1. Komputer atau monitor tidak menyala, kemungkinan disebabkan oleh switch atau kabel daya belum terhubung.
  2. Card adapter yang tidak terdeteksi disebabkan oleh pemasangan card belum pas ke slot/
Sumber : http://jamin92.wordpress.com/2009/03/13/langkah-merakit-komputerpc/

Membuat LOGO Dengan CorelDRAW

Dalam Tutorial Coreldraw kali ini penulis bukan bermaksud untuk beriklan namun disini penulis cuma ingin sharing pembuatan Coreldraw logo desain saja...

Pada tutorial kali ini kita akan menggunakan teknik shaping untuk menghasilkan LOGO ,,,,,,,,,.diharapkan setelah bisa mempelajari ini kita bisa menguasai beberapa teknik yang ada pada coreldraw untuk menelurkan desain-desain yang menarik. Ikuti langkah-langkah berikut:

1. buat dokumen baru, buatlah lingkaran lonjong dengan menggunakan elipse tool (warna fill dan outline merah)seperti dibawah ini:


2. kemudian warnai seperti pada gambar: setelah itu kita akan menduplicat dan memutarnya 60 derajat (klik windows -> docker -> transformation -> dan pilih rotate), maka akan keluar kotak dialog sebelah kanan (atur sesui gambar) lalu klik 3 kali pada aply to duplicate :

hasilnya:


3. ubah warna seperti pada gambar dibawah (klik pada obyek yang mau diganti, lalu klik warna pada color pallete) lihat gambar:


4. sekarang kita bermain dengan teknik shaping ( klik pada windows ->docker -> shaping ) maka akan keluar kotak dialog shaping pada kanan layer, pilih interest dan atur sesuai dengan gambar:


5. oke kita klik warna merah dan biru (sambil menekan shift pada keyboard), lalu klik interest with (pada kotak dialog shaping tadi) kemudian klik pada warna kuning. Lalu kita pilih  warna bebas  untuk mewarnai obyek hasil interest tadi (yang penting beda dengan 3 warna dasar) disini saya pilih warna hijau, lihat gambar:


6. setelah itu sekarang kita pilih warna kuning dan merah, lalu klik interest with, kemudian klik pada warna biru, kemudian pilih warna yang beda dengan 3 warna dasar (saya pilih warna pink) untuk membedakan saja.


7. pilih pick tool dan blok obyek hasil dari interest tadi, kemudian klik weld untuk menjadikan satu (karna obyek hasil interest terpish) seperti pada gambar:

Ngeblog

Hasilnya



8. sekarang waktunya tuk memisah obyek warna pink, buatlah garis menggunakan bazier atau freehand tool:



9. lalu  sama dengan langkah dua kita akan menduplicate garis dengan cara rotate (cara ke 2):


10. setelah itu pilih semua garis2 tadi yang di duplicate (dengan kombinasi tombol shift + klik) lalu di group (klik Arrange -> group). Setelah jadi satu kita piih bintang (warna pink) dan garis (hasil group ) lalu pada property bar pilih Trim kemudian klik  Break Apart (digunakan untuk memotong2 bintang dengan obyek garis diatasnya)

11. oke sekarang hapus garis hasil group tadi karna kita tidak menggunakannya lagi, sekarang kita klik potongan2 dari bintang tersebut kemudian warnai lihat gambar:


12. nih hasil akhirnya….puanjang ya…tapi semoga panjang juga ilmu yang didapet…hehehe…..
indosat grafis logo


Terima Kasih... Semoga Bermanfaat